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Unitary and Orthogonal Operators and Their Matrices

1. Label the following statements as true or false. Assume that the underlying inner product
spaces are finite-dimensional.

(a) Every unitary operator is normal.

(b) Every orthogonal operator is diagonalizable.

(c) A matrix is unitary if and only if it is invertible.

(d) If two matrices are unitarily equivalent, then they are also similar.

(e) The sum of unitary matrices is unitary.

(f) The adjoint of a unitary operator is unitary.

(g) If T is an orthogonal operator on V, then [T]β is an orthogonal matrix for any ordered basis
β for V.

(h) If all the eigenvalues of a linear operator are 1, then the operator must be unitary or or-
thogonal.

(i) A linear operator may preserve the norm, but not the inner product.

2. For each of the following matrices A, find an orthogonal or unitary matrix P and a diagonal
matrix D such that P∗AP = D.(

1 2
2 1

)
a)

(
0 1
1 0

)
b)

(
2 3− 3i

3 + 3i 5

)
c)0 2 2

2 0 2
2 2 0

d)

2 1 1
1 2 1
1 1 2

e)

3. Prove that the composite of unitary [orthogonal] operators is unitary [orthogonal].

4. For z ∈ C, define Tz : C → C by Tz(u) = zu. Characterize those z for which Tz is normal,
self-adjoint, or unitary.

5. Which of the following pairs of matrices are unitarily equivalent?(
1 0
0 1

)
and

(
0 1
1 0

)
a)

(
0 1
1 0

)
and

(
0 1

2
1
2 0

)
b)

 0 1 0
−1 0 0

0 0 1

 and

 2 0 0
0 −1 0
0 0 0

c)



 0 1 0
−1 0 0

0 0 1

 and

 1 0 0
0 i 0
0 0 −i

d)

 1 1 0
0 2 2
0 0 3

 and

 1 0 0
0 2 0
0 0 3

e)

6. Let V be the inner product space of complex-valued continuous functions on [0,1] with the
inner product

〈
f , g
〉
=
∫ 1

0
f (t)g(t) dt.

Let h ∈ V, and define T : V → V by T( f ) = h f . Prove that T is a unitary operator if and only if
|h(t)| = 1 for 0 ≤ t ≤ 1.

7. Prove that if T is a unitary operator on a finite-dimensional inner product space V, then T has
a unitary square root: that is, there exists a unitary operator U such that T = U2.

8. Let T be a self-adjoint linear operator on a finite-dimensional inner product space. Prove that
(T + iI)(T − iI)−1 is unitary.

9. Let U be a linear operator on a finite-dimensional inner product space V. If ‖U(x)‖ = ‖x‖ for
all x in some orthonormal basis for V, must U be unitary? Justify your answer with a proof or
a counterexample.

10. Let A be an n× n real symmetric or complex normal matrix. Prove that

tr(A) =
n

∑
i=1

λi and tr(A∗A) =
n

∑
i=1
|λi|2.

where the λi’s are the (not necessarily distinct) eigenvalues of A.

11. Find an orthogonal matrix whose first row is ( 1
3 , 2

3 , 2
3 ).

12. Let A be an n× n real symmetric or complex normal matrix. Prove that

det(A) =
n

∏
i=1

λi.

where the λi’s are the (not necessarily distinct) eigenvalues of A.

13. Suppose that A and B are diagonalizable matrices. Prove or disprove that A is similar to B if
and only if A and B are unitarily equivalent.

14. Prove that if A and B are unitarily equivalent matrices, then A is positive definite [semidefinite]
if and only if B is positive definite [semidefinite].

15. Let U be a unitary operator on an inner product space V, and let W be a finite-dimensional
U-invariant subspace of V. Prove that

(a) U(W) = W;

(b) W⊥ is U-invariant.

Contrast (b) with Exercise 16.



16. Find an example of a unitary operator U on an inner product space and a U-invariant subspace
W such that W⊥ is not U-invariant.

17. Prove that a matrix that is both unitary and upper triangular must be a diagonal matrix.

18. Show that “is unitarily equivalent to”is an equivalence relation on Mn×n(C).

19. Let W be a finite-dimensional subspace of an inner product space V and V = W ⊕W⊥. Define
U : V → V by U(v1 + v2) = v1 − v2, where v1 ∈ W and v2 ∈ W⊥. Prove that U is a self-adjoint
unitary operator.

20. Let V be a finite-dimensional inner product space. A linear operator U on V is called a partial
isometry if there exists a subspace W of V such that ‖U(x)‖ = ‖x‖ for all x ∈ W and U(x) = 0
for all x ∈ W⊥. Observe that W need not be U-invariant. Suppose that U is such an operator
and {v1, v2, . . . , vk} is an orthonormal basis for W. Prove the following results.

(a)
〈
U(x), U(y)

〉
=
〈

x, y
〉

for all x, y ∈W.

(b) {U(v1), U(v2), . . . , U(vk)} is an orthonormal basis for R(U).

(c) There exists an orthonormal basis γ for V such that the first k columns of [U]γ form an
orthonormal set and the remaining columns are zero.

(d) Let {w1, w2, . . . , wj} be an orthonormal basis for R(U)⊥ and

β =
{

U(v1), U(v2), . . . , U(vk), w1, . . . , wj

}
.

Then β is an orthonormal basis for V.

(e) Let T be the linear operator on V that satisfies T(U(vi)) = vi (1 ≤ i ≤ k) and T(wi) = 0
(1 ≤ i ≤ j). Then T is well defined, and T = U∗.
Hint: Show that

〈
U(x), y

〉
=
〈

x, T(y)
〉

for all x, y ∈ β. There are four cases.

(f) U∗ is a partial isometry.

21. Let A and B be n× n matrices that are unitarily equivalent.

(a) Prove that tr(A∗A) = tr(B∗B).

(b) Use (a) to prove that

n

∑
i,j=1
|Aij|2 =

n

∑
i,j=1
|Bij|2.

(c) Use (b) to show that the matrices(
1 2
2 i

)
and

(
i 4
1 1

)
are not unitarily equivalent.

22. Let V be a real inner product space.

(a) Prove that any translation on V is a rigid motion.

(b) Prove that the composite of any two rigid motions on V is a rigid motion on V.



23. Theorem 6.22 : Let f : V → V be a rigid motion on a finite-dimensional ral inner product
space V. Then there exists a unique orthogonal operator T on V and a unique translation g on
V such that f = g ◦ T.

Prove the following variation of Theorem 6.22: If f : V → V is a rigid motion on a finite-
dimensional real inner product space V, then there exists a unique orthogonal operator T on V
and a unique translation g on V such that f = T ◦ g.

24. Theorem 6.23 : Let T be an orthogonal operator on R2, and let A = [T]β, where β is the
standard ordered basis for R2. Then exactly one of the following conditions is satisfied:

(a) T is a rotation, and det(A) = 1.

(b) T is a reflectioni about a line through the origin, and det(A) = −1.

Let T and U be orthogonal operators on R2. Use Theorem 6.23 to prove the following results.

(a) If T and U are both reflections about lines through the origin, then UT is a rotation.

(b) If T is a rotation and U is a reflection about a line through the origin, then both UT and
TU are reflections about lines through the origin.

25. Suppose that T and U are reflections of R2 about the respective lines L and L′ through the origin
and that φ and ψ are the angles from the positive x-axis to L and L′, respectively. By Exercise
24. UT is a rotation. Find its angle of rotation.

26. Suppose that T and U are orthogonal operators on R2 such that T is the rotation by the angle φ
and U is the reflection about the line L through the origin. Let ψ be the angle from the positive
x-axis to L. By Exercise 24, both UT and TU are reflections about lines L1 and L2, respectively,
through the origin.

(a) Find the angle θ from the positive x-axis to L1.

(b) Find the angle θ from the positive x-axis to L2.

27. Find new coordinates x′, y′ so that the following quadratic forms can be written as λ1(x′)2 +
λ2(y′)2.

(a) x2 + 4xy + y2

(b) 2x2 + 2xy + 2y2

(c) x2 − 12xy− 4y2

(d) 3x2 + 2xy + 3y2

(e) x2 − 2xy + y2

28. Consider the expression Xt AX, where Xt = (x, y, z) and A =

2 1 1
1 2 1
1 1 2

. Find a change of

coordinates x′, y′, z′ so that the preceding expression is of the form

λ1(x′)2 + λ2(y′)2 + λ3(z′)2.

29. QR-Factorization. Let w1, w2, . . . , wn be linearly independent vectors in Fn, and let v1, v2, . . . , vn
be the orthogonal vectors obtained from w1, w2, . . . , wn by the Gram Schmidt process. Let
u1, u2, . . . , un be the orthonormal basis obtained by normalizing the vi’s.



(a) Solving

vk = wk −
k−1

∑
j=1

〈wk, vj〉
‖vj‖2 vj

for wk in terms of uk, show that

wk = ‖vk‖uk +
k−1

∑
j=1

〈
wk, uj

〉
uj (1 ≤ k ≤ n).

(b) Let A and Q denote the n × n matrices in which the kth columns are wk and uk, respec-
tively. Define R ∈ Mn×n(F) by

Rjk =


‖vj‖ if j = k〈
wk, uj

〉
if j < k

0 if j > k.

Prove A = QR.

(c) Compute Q and R as in (b) for the 3× 3 matrix whose columns are the vectors (1, 1, 0), (2, 0, 1),
and (2, 2, 1).

(d) Since Q is unitary [orthogonal] and R is upper triangular in (b), we have shown that every
invertible matrix is the product of a unitary [orthogonal] matrix and an upper triangular
matrix. Suppose that A ∈ Mn×n(F) is invertible and A = Q1R1 = Q2R2, where Q1, Q2 ∈
Mn×n(F) are unitary and R1, R2 ∈ Mn×n(F) are upper triangular. Prove that D = R2R−1

1
is a unitary diagonal matrix.
Hint: Use the fact that a matrix that is both unitary and upper triangular must be a diago-
nal matrix.

(e) The QR factorization described in (b) provides an orthogonalization method for solving a
linear system Ax = b when A is invertible. Decompose A to QR, by the Gram Schmidt
process or other means, where Q is unitary and R is upper triangular. Then QRx = b, and
hence Rx = Q∗b. This last system can be easily solved since R is upper triangular. 1

Use the orthogonalization method and (c) to solve the system

x1 + 2x2 + 2x3 = 1
x1 + 2x3 = 11
x2 + x3 = −1.

30. Suppose that β and γ are ordered bases for an n-dimensional real [complex] inner product
space V. Prove that if Q is an orthogonal [unitary] n× n matrix that changes γ-coordinates into
β-coordinates, then β is orthonormal if and only if γ is orthonormal.

The following definition is used in Exercises 31 and 32.

Definition. Let V be a finite-dimensional complex [real] inner product space, and let u be a unit
vector in V. Define the Householder operator Hu : V → V by Hu(x) = x− 2

〈
x, u
〉
u for all x ∈ V.

1At one time, because of its great stability, this method for solving large systems of linear equations with a computer
was being advocated as a better method than Gaussian elimination even though it requires about three times as much
work. (Later, however, J. H. Wilkinson showed that if Gaussian elimination is done “properly,”then it is nearly as stable as
the orthogonalization method.)



31. Let Hu be a Householder operator on a finite-dimensional inner product space V. Prove the
following results.

(a) Hu is linear.

(b) Hu(x) = x if and only if x is orthogonal to u.

(c) Hu(u) = −u.

(d) H∗u = Hu and H2
u = 1, and hence Hu is a unitary [orthogonal] operator on V.

(Note: If V is a real inner product space, then Hu is a reflection.)

32. Let V be a finite-dimensional inner product space over F. Let x and y be linearly independent
vectors in V such that ‖x‖ = ‖y‖.

(a) If F = C, prove that there exists a unit vector u in V and a complex number θ with |θ| = 1
such that Hu(x) = θy.
Hint: Choose θ so that

〈
x, θy

〉
is real, and set u = 1

‖x−θy‖ (x− θy).

(b) If F = R, prove that there exists a unit vector u in V such that Hu(x) = y.

*****


